Fall semester: August 2018~January 2019

	Course Code	E / C	SUBJECT	Crt.	Grade	1 Semes.	2Semes.		Course Code	E / C	SUBJECT	Crt.	Grade	1 Semes.	2Semes.
Compulsory Courses	CED627		Seminar	4	1, 2	1	1	Profess	CEM180	Е	Principles and Applications of Adsorption Process	3	1	3	
	CED001 CED002		English Technical Writing (1)(2)	2	1	1	1	essi	CEM161	E	Enzymes and Cell Immobilization	3	1	3	
								iona	CEM131	Е	Polymer Structure and Physical Properties	3	1	3	
								1 E)	CEM201	Е	Instrumental Analysis Special Topics	3	1	3	
								ectiv	CEM101	E	Air Pollution Control Theory and Design	3	1	3	
Core Elective Courses	CEM030	Е	Advanced Reaction Engineering	3	1	3		ve C	CEM350	Е	Particulate Engineering	3	1	3	
	CEM052	Е	Advanced Transport Phenomena(1)	3	1	3		Cours	CEM153	Е	Membrane Technology	3	1	3	
	CEM120	Е	Advanced Organic Materials	3	1		3	es	CEM080	Е	Opto-Polymers & Their Application	3	1	3	
	CEM060	Е	Advanced Transport Phenomena(2)	3	1		3		CEM740	Е	Special Topics in Advanced Electrochemistry	3	1	3	
	CEM220	Е	Advanced Process Engineering	3	1		3		CED008	Е	Clinical Applications of Biomedical Engineering and Materials	3	1	3	
	CEM123	Е	Advanced Inorganic Materials	3	1	3									
	CEM270	Е	Advanced Thermodynamics	3	1		3								
	BEM121	Е	Biochemical Engineering	3	1		3								
	BEM122	Е	Biomedical Engineering	3	1		3		CED005	Е	Applied Industrial Microbiology	3	1	3	
									CED007	Е	Tissue Engineering	3	1	3	
									CEM016	Е	Theory and Design of Wastewater Treatment	3	1		3
									CEM540	E	Bioreactor	3	1		3
									CEM452	Е	Polymer Blends	3	1		3
									CEM21Y	Е	Design of Experiments	3	1		3
									CEM454	Е	Thin Film Processing	3	1		3
									CEM256	Е	Battery and Energy Conversion	3	1		3
									CEM520	Е	Functional Polymers	3	1		3
									CEM760	Е	R&D and Patents Practice	3	1		3
									CEM091	Е	Solid State Chemistry	3	1		3

Remarks

- 1 At least 30 credit hours are required to receive Ph.D. degree : 12 credit hours from the required courses (including 6 credit hours of Thesis) and 9 credit hours of core elective courses.
- 2 Max. of 6 credit hours outside of CME Department and Biomed Graduate Institutes are counted for graduation requirement.
- 3 Students have to take least 3 courses from 9 core elective courses.
- 4 Ph.D. students must take the compulsory Seminar course in the first year and second year (total 4 credit hours).
- 5 All graduate students must pass/meet the English proficiency test/requirement as outlined in "English Proficiency Assessment for Foreign Students, College of Engineering, Chang Gung University".
- 6 International students may take elective courses in English and provided by the departments /graduate institutes of CGU toward graduation requirement or graduation requirement of core elective courses, within the caps of 12 credit hours for M.S. students and 9 credit hours for Ph.D. students. These courses are subject to review by advisor and graduate student affairs committee. This applies to the international students admitted through the international student admission
- 7 E:Elective / C:Compulsory

所長簽章:	2019/12/13
-------	------------